hornby electronic

REVERSE VOLTAGE：
FORWARD CURRENT：

20 to 200 VOLTS
16．0 AMPERE

FEATURES

－Plastic package has UL flammability classification 94V－0
－Metal of silicon rectifier，majority carrier conduction
－Guard ring for transient protection
－High capability
－Low power loss，high efficiency
－High current capability，low V_{F}
－High surge capacity
－For use in low voltage，high frequency inverters，free whelling，and polarity protection applications

MECHANICAL DATA

Case：Molded plastic，TO－220A
Epoxy：UL 94V－O rate flame retardant
Terminals：Leads solderable per MIL－STD－202
method 208 guaranteed
Polarity：As marked
Mounting position：Any

Dimensions in inches and（millimeters）

Weight：0．08ounce，2．24gram

Maximum Ratings and Electrical Characteristics

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified．
Single phase，half wave， $60 \mathrm{H}_{\mathrm{Z}}$ ，resistive or inductive load．
For capacitive load，derate current by 20% ．

	Symbols	SR1620	SR1630	SR1640	SR1650	SR1660	SR1680	SR16100	SR16150	SR16200	Units
Maximum Recurrent Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	20	30	40	50	60	80	100	150	200	Volts
Maximum RMS Voltage	$\mathrm{V}_{\text {RMS }}$	14	21	28	35	42	56	70	105	140	Volts
Maximum DC Blocking Voltage	$\mathbf{V}_{\text {DC }}$	20	30	40	50	60	80	100	150	200	Volts
Maximum Average Forward Rectified Current See Fig． 1	$\mathbf{I}_{(\mathrm{AV})}$	16.0									Amp
Peak Forward Surge Current， 8．3ms single half－sine－wave superimposed on rated load（JEDEC method）	$\mathbf{I}_{\text {FSM }}$	200									Amp
Maximum Forward Voltage at 16．0A DC and $25^{\circ} \mathrm{C}$	$\mathbf{V}_{\mathbf{F}}$	0.55					0.85		0.95		Volts
Maximum Reverse Current at $\mathrm{T}_{\mathrm{C}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ at Rated DC Blocking Voltage $\mathrm{T}_{\mathrm{C}}=\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$	I_{R}	$\begin{aligned} & 1.0 \\ & 50 \end{aligned}$									mAmp
Typical Junction Capacitance（Note 1）	C_{J}	750			500						pF
Typical Thermal Resistance（Note 2）	$\mathbf{R}_{\text {өJC }}$	2.0									${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range	T_{J}	－55 to＋125			-55 to +150						${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-55 to＋150									${ }^{\circ} \mathrm{C}$

NOTES：

1－Measured at $1 \mathrm{MH}_{\mathrm{z}}$ and applied reverse voltage of 4.0 VDC ．
2－Thermal Resistance from Junction to Case Per Leg

RATINGS AND CHARACTERISTIC CURVES

（b）＇IN $\operatorname{lazy~}$

