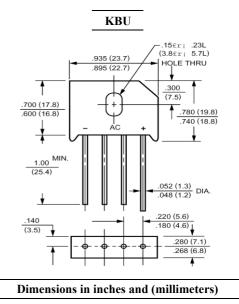
KBU6005 THRU KBU610 *single-phase silicon bridge rectifier*

REVERSE VOLTAGE: FORWARD CURRENT:


50 to 1000 VOLTS 6.0 AMPERE

FEATURES

- Reliable low cost construction utilizing molded plastic technique
- · Ideal for printed circuit board
- \cdot Low forward voltage drop
- · Low reverse leakage current
- · High surge current capability

MECHANICAL DATA

Case: Molded plastic, KBU Epoxy: UL 94V-O rate flame retardant Terminals: Leads solderable per MIL-STD-202, method 208 guaranteed Mounting position: Any Weight: 0.3ounce, 8.0gram

2Z

HORNBY ELECTRONIC

ð

Maximum Ratings and Electrical Characteristics

Ratings at 25 ambient temperature unless otherwise specified.

Single phase, half wave, $60H_Z$, resistive or inductive load.

For capacitive load, derate current by 20%.

	Symbols	KBU6005	KBU601	KBU602	KBU604	KBU606	KBU608	KBU610	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	V _{RMS}	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current	т	6.0							Amp
.375"(9.5mm) Lead Length at T _A =65	I _(AV)								
Peak Forward Surge Current,									
8.3ms single half-sine-wave	I _{FSM}	I _{FSM} 200							Amp
superimposed on rated load (JEDEC method)									
Maximum Forward Voltage	V _F	1.0							Volts
at 6.0A DC and 25	۷F								
Maximum Reverse Current at T _A =25	т	10.0							
at Rated DC Blocking Voltage T _A =100	I _R				500				uAmp
Typical Thermal Resistance (Note 2)	R _{0JA}	8.6							/W
Typical Thermal Resistance (Note 2)	R _{0JL}	3.1							/W
Operating and Storage Temperature Range	T _J , Tstg	-55 to +125							

NOTES:

1- Measured at 1 $\ensuremath{\text{MH}}_{\ensuremath{\text{Z}}}$ and applied reverse voltage of 4.0 VDC.

2- Thermal resistance from junction to ambient with units in free air, P.C.B. mounted on 0.5 x 0.5" (12 x 12mm) copper pads, 0.375" (9.5mm) lead length

RATINGS AND CHARACTERISTIC CURVES

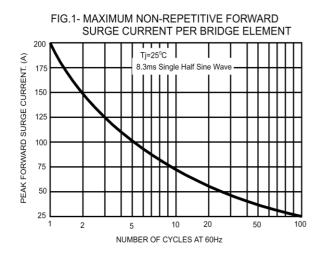
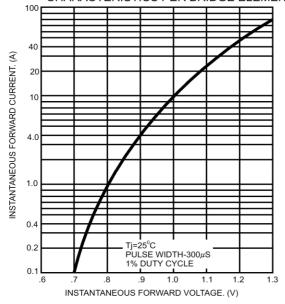
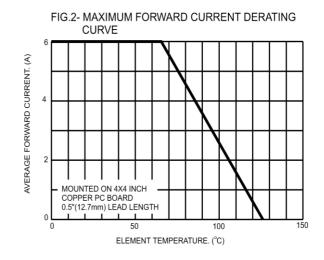
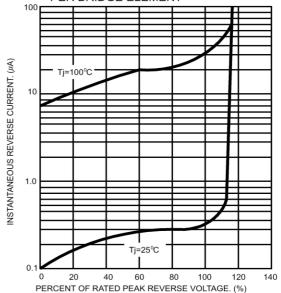




FIG.3- TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS PER BRIDGE ELEMENT


康比

雷

HORNBY ELECTRONIC

3

