

TRIAC

APPLICATIONS

- For use in high bidirectional transient and blocking voltage applications
- For high thermal cycling performance
- Typical application include motor control, industrial and domestic lighting, heating and static switching

TO-126 Plastic Package

Absolute Maximum Ratings

Absolute maximum ratings			
Parameter	Symbol	Value	Unit
Repetitive Peak Off State Voltage	V_{DRM}	600 ¹⁾	V
RMS on State Current Full Sine Wave, T _{mb} ≤ 107 °C	I _{T(RMS)}	4	Α
Non-Repetitive Peak on State Current $t = 20 \text{ ms}$ Full Sine Wave, $T_J = 25 ^{\circ}\text{C}$ Prior to Surge $t = 16.7 \text{ms}$	I _{TSM}	25 27	Α
I ² t for Fusing t = 10 ms	l ² t	3.1	A ² s
Repetitive Rate of Rise of on State Current after Triggering I_{TM} = 6 A, I_G = 0.2 A, dI_G/dt = 0.2 A/ μ s T2+ G+ T2+ G- T2- G-	dl _⊤ /dt	50 50 50	A/µs
Peak Gate Current	I _{GM}	10	Α
Peak Gate Voltage	V_{GM}	5	V
Peak Gate Power	P _{GM}	5	W
Average Gate Power (Over any 20 ms period)	$P_{G(AV)}$	0.5	W
Operating Junction Temperature	T _j	125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

The rate of rise of current should not excees 3A/µs

Characteristics at T_J = 25 °C

Parameter	Symbol	Min.	Тур.	Max.	Unit
Gate Trigger Current at V_D = 12 V, I_T = 0.1 A	I _{GT}		- - -	35 35 35 70	mA
Latching Current at V _D = 12 V, I _{GT} = 0.1 A T2+ G+ T2+ G- T2- G- T2- G+	IL		- - -	20 30 20 30	mA
Holding Current at $V_D = 12 \text{ V}$, $I_{GT} = 0.1 \text{ A}$	I _H	-	-	15	mA
On State Voltage at I _T = 5 A	V _T	-	-	1.7	V
Gate Trigger Voltage at V_D = 12 V, I_T = 0.1 A at V_D = 400 V, I_T = 0.1 A, T_J = 125 °C	V _{GT}	- 0.25		1.5 -	V
Off State Leakage Current at V _D = max, V _{DRM} = max, T _J = 125 °C	I _D	-	-	0.5	mA
Critical Rate of Rise of Off State Voltage at V _{DM} = 67% V _{DRM} max, T _J = 125 °C, exponential waveform, gate open circuit	dV _D /dt	100	250	-	V/µs
Critical Rate of Change of Commutating Voltage at V _{DM} = 400 V, T _J = 95 °C, I _{T(RMS)} = 4 A, dI _{com} /dt = 1.8 A/ms, gate open circuit	dV _{com} /dt	-	50		V/µs
Gate Controlled Turn On Time at I_{TM} = 6 A, V_D = V_{DRM} max, I_G = 0.1 A, dI_G/dt = 5 A/ μ s,	t _{gt}	-	2	-	μs

Thermal Resistance

Parameter		Symbol	Value	Unit
Junction to Mounting Base	Full Cycle Half Cycle	R _{th(j-mb)}	3 3.7	K/W
Junction to Ambient (typical)	In Free Air	R _{th(j-a)}	100 (Typ.)	K/W

Dated: 16/09/2016 Rev: 01