Small Signal MOSFET

200 mA, 60 V

N -Channel

1. Source 2.Gate 3.Drain

TO-92 Plastic Package

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Value	Unit
Drain Source Voltage	$V_{\text {DSS }}$	60	V
Drain-Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$)	$V_{\text {DGR }}$	60	V
Gate-source Voltage Continuous Non-repetitive (tp $\leq 50 \mu \mathrm{~s})$	$\begin{gathered} V_{G S} \\ V_{G S M} \\ \hline \end{gathered}$	$\begin{array}{r} \pm 20 \\ \pm 40 \\ \hline \end{array}$	V
Drain Current Continuous Pulsed	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{D}} \\ & \mathrm{I}_{\mathrm{DM}} \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Total Power Dissipation	P_{D}	350	mW
Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Max.	Unit
Drain-Source Breakdown Voltage $\text { at } V_{G S}=0, I_{D}=10 \mu \mathrm{~A}$	$V_{\text {(BR)DSs }}$	60	-	V
Zero Gate Voltage Drain Current at $\mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{I}_{\text {DSS }}$	-	1	$\mu \mathrm{A}$
Gate-Body Leakage Current at $\mathrm{V}_{\mathrm{GS}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$\pm \mathrm{IGSS}^{\text {G }}$	-	10	nA
Gate Threshold Voltage at $V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	0.8	3	V
$\begin{aligned} & \text { Static Drain-Source On-Resistance } \\ & \text { at } \mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~mA} \end{aligned}$	$\mathrm{r}_{\text {DS(on) }}$	-	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	Ω
$\begin{aligned} & \text { Drain-Source On-Voltage } \\ & \text { at } \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~mA} \\ & \hline \end{aligned}$	$V_{\text {DS(on) }}$	-	$\begin{gathered} 2.5 \\ 0.45 \end{gathered}$	V
On-State Drain Current at $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$	$I_{\text {(on) }}$	75	-	mA
Forward Transconductance at $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}$	g_{fs}	100	-	mS
Input Capacitance at $V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {iss }}$	-	60	pF
Output Capacitance $\text { at } \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {oss }}$	-	25	pF
Reverse Transfer Capacitance at $V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{G S}=0, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {rss }}$	-	5	pF
Turn-On Delay Time at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~V}_{\text {gen }}=10 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	-	10	ns
Turn-Off Delay Time at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~V}_{\text {gen }}=10 \mathrm{~V}$	$\mathrm{t}_{\text {off }}$	-	10	ns

