REVERSE VOLTAGE：
FORWARD CURRENT：

50 to 600 VOLTS

1．0 AMPERE

FEATURES

－High surge current capability
－ 1.0 ampere operation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ with no
thermal runaway．
－Void－free Plastic in a DO－41 package．
－Fast switching for high efficiency
－Exceeds environmental standards of MIL－S－19500／228
－Low leakage．

MECHANICAL DATA

Case：Molded plastic，DO－41
Epoxy：UL 94V－O rate flame retardant
Lead：Axial leads，solderable per MIL－STD－202，
method 208 guaranteed
Polarity：Color band denotes cathode end
Mounting position：Any

Dimensions in inches and（millimeters）

Weight：0．012ounce， 0.33 gram

Maximum Ratings and Electrical Characteristics

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified．
Single phase，half wave， $60 \mathrm{H}_{\mathrm{Z}}$ ，resistive or inductive load．
For capacitive load，derate current by 20% ．

	Symbols	1N4933	1N4934	1N4935	1N4936	1N4937	Units
Maximum Recurrent Peak Reverse Voltage	$\mathbf{V}_{\text {RRM }}$	50	100	200	400	600	Volts
Maximum RMS Voltage	$\mathrm{V}_{\text {RMS }}$	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	$\mathbf{V}_{\text {DC }}$	50	100	200	400	600	Volts
Maximum Average Forward Rectified Current ．375＂（9．5mm）Lead Length at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	$\mathbf{I}_{(\mathrm{AV})}$			1.0			Amp
Peak Forward Surge Current， 8．3ms single half－sine－wave superimposed on rated load（JEDEC method）	$\mathbf{I F S M}^{\text {F }}$			30			Amp
Maximum Forward Voltage at 1.0 A DC and $25^{\circ} \mathrm{C}$	$\mathbf{V F}_{\text {F }}$			1.2			Volts
Maximum Reverse Current at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ at Rated DC Blocking Voltage $\mathrm{T}_{\mathrm{A}}=\mathbf{1 0 0}{ }^{\circ} \mathrm{C}$	I_{R}			$\begin{gathered} \hline 5.0 \\ 50 \\ \hline \end{gathered}$			uAmp
Typical Junction Capacitance（Note 1）	C_{J}			12			pF
Typical Thermal Resistance（Note 2）	$\mathbf{R}_{\text {®JA }}$			50			${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Reverse Recovery Time（Note 3）	T_{RR}			200			nS
Operating and Storage Temperature Range	T_{J} ，Tstg			－55 to＋150			${ }^{\circ} \mathrm{C}$

NOTES：

1－Measured at $1 \mathrm{MH}_{\mathrm{Z}}$ and applied reverse voltage of 4.0 VDC ．
2－Thermal Resistance From Junction to Ambient 0.375 ＂$(9.5 \mathrm{~mm})$ lead length P．C．B．Mounted．
3－Reverse Recovery Test Conditions： $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V}$

RATINGS AND CHARACTERISTIC CURVES

FIG． 3 －TYPICAL JUNCTION CAPACITANCE

FIG． 5 －TEST CIRCUIT DIAGRAM AND REVERSE RECOVERY TIME CHARACTERISTIC

FIG． 2 －MAXIMUM NON－REPETITIVE FORWARD SURGE CURRENT

FIG． 4 －TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

INSTANTANEOUS FORWARD VOLTAGE，（V）

